首页> 外文OA文献 >Compression Limits for Random Vectors with Linearly Parameterized Second-Order Statistics
【2h】

Compression Limits for Random Vectors with Linearly Parameterized Second-Order Statistics

机译:线性参数化随机向量的压缩极限   二阶统计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The class of complex random vectors whose covariance matrix is linearlyparameterized by a basis of Hermitian Toeplitz (HT) matrices is considered, andthe maximum compression ratios that preserve all second-order information arederived --- the statistics of the uncompressed vector must be recoverable froma set of linearly compressed observations. This kind of vectors arisesnaturally when sampling wide-sense stationary random processes and features anumber of applications in signal and array processing. Explicit guidelines to design optimal and nearly optimal schemes operatingboth in a periodic and non-periodic fashion are provided by considering two ofthe most common linear compression schemes, which we classify as dense orsparse. It is seen that the maximum compression ratios depend on the structureof the HT subspace containing the covariance matrix of the uncompressedobservations. Compression patterns attaining these maximum ratios are found forthe case without structure as well as for the cases with circulant or bandedstructure. Universal samplers are also proposed to compress unknown HTsubspaces.
机译:考虑通过Hermitian Toeplitz(HT)矩阵对其协方差矩阵进行线性参数化的一类复杂随机向量,并推导保留所有二阶信息的最大压缩率---必须从一个集合中恢复未压缩向量的统计量线性压缩观测值。当对广义的平稳随机过程进行采样时,这种矢量自然会出现,并且在信号和数组处理中具有许多应用。通过考虑两种最常见的线性压缩方案(我们将其归类为稀疏或稀疏),提供了以周期性和非周期性方式设计最优方案和近乎最优方案的明确指南。可以看出,最大压缩率取决于包含未压缩观测值协方差矩阵的HT子空间的结构。对于没有结构的情况以及具有循环或带状结构的情况,发现达到这些最大比率的压缩模式。还提出了通用采样器来压缩未知的HT子空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号